SQL如何执行
# Oracle中如何执行
!()[]
- 语法检查:检查 SQL 拼写是否正确,如果不正确,Oracle 会报语法错误。
- 语义检查:检查 SQL 中的访问对象是否存在。比如我们在写 SELECT 语句的时候,列名写错了,系统就会提示错误。语法检查和语义检查的作用是保证 SQL 语句没有错误。
- 权限检查:看用户是否具备访问该数据的权限。
- 共享池检查:共享池(Shared Pool)是一块内存池,最主要的作用是缓存 SQL 语句和该语句的执行计划。Oracle 通过检查共享池是否存在 SQL 语句的执行计划,来判断进行软解析,还是硬解析。那软解析和硬解析又该怎么理解呢?在共享池中,Oracle 首先对 SQL 语句进行 Hash 运算,然后根据 Hash 值在库缓存(Library Cache)中查找,如果存在 SQL 语句的执行计划,就直接拿来执行,直接进入“执行器”的环节,这就是软解析。如果没有找到 SQL 语句和执行计划,Oracle 就需要创建解析树进行解析,生成执行计划,进入“优化器”这个步骤,这就是硬解析。
- 优化器:优化器中就是要进行硬解析,也就是决定怎么做,比如创建解析树,生成执行计划。
- 执行器:当有了解析树和执行计划之后,就知道了 SQL 该怎么被执行,这样就可以在执行器中执行语句了。
共享池是 Oracle 中的术语,包括了库缓存,数据字典缓冲区等。我们上面已经讲到了库缓存区,它主要缓存 SQL 语句和执行计划。而数据字典缓冲区存储的是 Oracle 中的对象定义,比如表、视图、索引等对象。当对 SQL 语句进行解析的时候,如果需要相关的数据,会从数据字典缓冲区中提取。
库缓存这一个步骤,决定了 SQL 语句是否需要进行硬解析。为了提升 SQL 的执行效率,我们应该尽量避免硬解析,因为在 SQL 的执行过程中,创建解析树,生成执行计划是很消耗资源的。
如何避免硬解析,尽量使用软解析呢?在 Oracle 中,绑定变量是它的一大特色。绑定变量就是在 SQL 语句中使用变量,通过不同的变量取值来改变 SQL 的执行结果。这样做的好处是能提升软解析的可能性,不足之处在于可能会导致生成的执行计划不够优化,因此是否需要绑定变量还需要视情况而定。
select * from player where player_id = 10001;
select * from player where player_id = :player_id;
2
这两个查询语句的效率在 Oracle 中是完全不同的。如果你在查询 player_id = 10001 之后,还会查询 10002、10003 之类的数据,那么每一次查询都会创建一个新的查询解析。
而第二种方式使用了绑定变量,那么在第一次查询之后,在共享池中就会存在这类查询的执行计划,也就是软解析。
因此可以通过使用绑定变量来减少硬解析,减少 Oracle 的解析工作量。但是这种方式也有缺点,使用动态 SQL 的方式,因为参数不同,会导致 SQL 的执行效率不同,同时 SQL 优化也会比较困难。
# MySQL中如何执行
!()[]
MySQL 由三层组成:
- 连接层:客户端和服务器端建立连接,客户端发送 SQL 至服务器端;
- SQL 层:对 SQL 语句进行查询处理;
- 存储引擎层:与数据库文件打交道,负责数据的存储和读取。
sql层结构:
!()[]
- 查询缓存:Server 如果在查询缓存中发现了这条 SQL 语句,就会直接将结果返回给客户端;如果没有,就进入到解析器阶段。需要说明的是,因为查询缓存往往效率不高,所以在 MySQL8.0 之后就抛弃了这个功能。
- 解析器:在解析器中对 SQL 语句进行语法分析、语义分析。
- 优化器:在优化器中会确定 SQL 语句的执行路径,比如是根据全表检索,还是根据索引来检索等。
- 执行器:在执行之前需要判断该用户是否具备权限,如果具备权限就执行 SQL 查询并返回结果。在 MySQL8.0 以下的版本,如果设置了查询缓存,这时会将查询结果进行缓存。
SQL 语句在 MySQL 中的流程是:SQL 语句→缓存查询→解析器→优化器→执行器。
与 Oracle 不同的是,MySQL 的存储引擎采用了插件的形式,每个存储引擎都面向一种特定的数据库应用环境。
# mysql如何对sql执行时间进行分析
- 开启profiling
- 执行一个sql查询
- 查看当前会话的profiles 或者查询指定的 Query ID
set profiling=1;
select @@profiling;
select * from wucai.heros;
show profile;
show profile for query 2;
2
3
4
5
# 查看mysql的执行计划
explain select ...